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1 Introduction

We consider a novel approach for developing a stable operational platform for the rapid
production of large quantities of therapeutic and/or preventative countermeasures.
The ideas developed here can also serve as the foundations in designing an economical
platform for the production of complex protein therapeutics to replace mammalian
cell culture production methods used in the pharmaceutical industry. This approach
involves recruiting the biochemical machinery in an existing biomass for the production
of a vaccine or antibody by infection using a virus carrying a passenger gene for the
desired countermeasure. While our motivation derives from efforts related to first
response to deliberate bio toxic attacks on populations, the models we develop may also
have use in designing prophylactic production systems against epidemics originating
naturally in populations which, without intervention, might result in pandemics. While
our model is specific to virus growth and vaccine production in shrimp, the implications
for other crustaceans are obvious. And of course the shrimp models we investigate can
serve as a foundation for understanding viral progression in other species important to
marine agriculture.

Our goal is to model a system wherein one uses shrimp as a scaffold organism to
produce biological countermeasures. In such a system one might first stock shrimp
postlarvae and allow them to grow normally in a controlled environment. Then one
infects them with a recombinant viral vector (e.g., recombinant Taura Syndrome virus
or rTSV) expressing a foreign antigen, resulting in vaccine production in live infected
shrimp.

To mathematically demonstrate the feasibility of this approach we consider a hybrid
model of the shrimp biomass/countermeasure production system which has two com-
ponents: biomass production, and production of countermeasure (antibody/vaccine).
We feed the output of the biomass production model as input to the vaccine production
model. For initial investigations the amount of vaccine produced is assumed equal to
the total infected biomass. Thus, the vaccine production model will essentially follow
the course of the viral dynamics in shrimp.

There is considerable literature on shrimp growth dynamics (e.g., [10, 11, 17, 24])
where mathematical descriptions of growth curves are fitted to data obtained for a
specific subspecies of shrimp and no structural information is utilized. However, there
is little information in the literature on modeling the dynamics of shrimp at the pop-
ulation level. In [9], the authors incorporate abiotic factors such as temperature into
a logistic type growth equation to model biomass dynamics in shrimp; in such models
it is assumed that all individuals are identical in characteristics and behavior. How-
ever, disregarding structure in constructing mathematical models for the dynamics of
shrimp is unrealistic, since shrimp have size dependent characteristics and responses to
external environment. The model in this paper is based on the classical McKendrick-
von-Foerster/Sinko-Streifer size-structured population equations [18, 21, 23] with mass
as the structure variable, i.e., we equate the size variable with the mass in our model.

There also appears to be a dearth of literature on modeling epidemics in shrimp
populations. In [20] the authors develop a non-structured five compartment epidemic
model of TSV that includes a Reed-Frost transmission process in closed populations
of shrimp (Litopenaeus vannamei). However, as in the case of the biomass model,
structure can play an important role in the study of viral epidemiology in shrimp.
Moreover, experimental results [14] suggest that the mortality rate in acutely infected
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shrimp depends on the length of time that the shrimp remain acute. Also, individuals
in the latent phase have varying residency times before they progress into the acute
phase. To incorporate all of these features, we attempted to model the progression of
TSV in shrimp in a system of delay PDEs. However, it is difficult to correctly account
for the different residency periods of individual shrimp in this fashion as the size of the
shrimp is a function of time. Instead of tracing back in time to incorporate delays, a
different approach involves recording the variable residency times in the different stages
by introducing a new variable which we call the class age of an individual. The class age
of an individual in a given stage represents the length of time that the individual spends
in that stage. Ours is the first attempt at a mathematical model that incorporates size
and class age to study the progression of TSV infection in shrimp. A similar approach
has been used previously to investigate a linear cell population model. In such models,
cells are assumed capable of simultaneous proliferation and maturation where in the
proliferating phase, cells are committed to undergo cell division some time units after
entering this phase [1]. There are several papers that investigate structured population
models with multiple internal variables, for example, see [15, 22].

The outline of the paper is as follows: In Section 2 we plot the growth data observed
in several different shrimp populations cultured in super-intensively stocked raceways
production systems at the Waddell Mariculture Center in Bluffton, SC. We use regres-
sion analysis to fit linear, cubic and exponential growth rate models to this data. In
Section 3 we formulate a biomass production model for the normal growth of shrimp
and present results of numerical simulations of this model, while in Section 4 we con-
struct a three compartment vaccine production model and analyze this model using
the method of characteristics. We also construct a discrete scheme for the vaccine
production model. Numerical simulations for the coupled biomass-vaccine production
model are discussed in Section 5.

Successful implementation of this shrimp-based expression system could potentially
provide an inexpensive alternative method to mammalian cell culture for making com-
plex recombinant proteins. In this context, complex recombinant proteins are ones
that undergo post-translational modifications such as glycosylation that cannot easily
be duplicated in bacterial and yeast protein expression systems. The shrimp expression
system could dramatically lower the costs of production of these complex proteins.

2 Data Fitting

We have fitted linear, cubic and exponential solutions x for individual growth rate

models
dx

dt
= g(x, t) (corresponding to g constant, quadratic and exponential) to the

data for the mean weight of the shrimp measured during a series of grow out runs in a
super-intensively stocked demonstration commercial scale raceway production system
[7] at the Waddell Mariculture Center. Growth data is based on population sampling
from a series of demonstration runs in a new advanced greenhouse enclosed biosecure
system developed for the culture of marine shrimp Litopenaeus vannamei. The Waddell
system provides for the culture of shrimp at very high densities without water exchange.
A dense microbial floc develops in the water column providing for the recycling of waste
material within the system to maintain water quality and enhance shrimp growth.
By applying filtration, oxygen injection and well designed feeds and feeding regimes,
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genetically selected specific pathogen free strains of shrimp can be cultured in this
system at high densities with good survival and excellent growth.

The various raceway runs initially had different stocking densities. The mean weight
x (in gm) of the shrimp were recorded on different days over several weeks. The results
of the regression analysis are presented below.

In raceway runs 6 and 9, the mean stocking weight is 1 gm, and linear fits give fair
approximations to the data obtained from these runs as observed in Figures 1 and 3,
respectively. We can also see in these two figures that a cubic fit gives a much better
approximation to the data than the corresponding linear fits. Run 10 was stocked with
shrimp that had a mean weight of 4 gm, and a linear fit seems to be appropriate in
this case as seen in Figure 4 (left). Run 8 was stocked with shrimp that had a mean
weight of 0.01 gm. From Figure 2 we can see that a linear fit does not do justice to the
data. However, a cubic fit works well in this case. In all these figures, the horizontal
axis represents time t in days and the vertical axis represents the mean weight x of
the shrimp. Each figure also records the equation for the corresponding linear, cubic
or exponential fit as the case may be.

We can conclude that a linear fit is a good approximation to the data in the range
1-20 gm, but a linear fit does not approximate the data in the interval 0-20 gm. In [12],
the authors have observed that growth of early postlarvae was exponential rather than
linear. However, we were unable to use an exponential function to fit the entire data,
i.e., in the range 0-20 gm. For example, Figure 4 (right) depicts the best exponential
fit to the data obtained from run 8. We can see that this fit does not give a good
approximation to the data. Instead a cubic fit seems to yield a good approximation as
seen in Figure 2 (right).

Using a linear fit for the mean weight x of the shrimp as a function of time t
implies that the growth function g(x, t) is a constant in the interval 1-20 gm. This
is the approximation that we have used to perform our simulations. Since a cubic fit
(for x as a function of time t) gives a far better approximation to the data, as seen in
Figures 1, 2, and 3, the growth function g(x, t) would then be a quadratic function of
time t. We have as yet not used such an approximation in our simulations since we
have assumed a mean stocking weight of 1 gm.
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Figure 1: Linear and cubic fitting to the data of raceway run 6, where the
mean stocking weight of the shrimp is 1 gm.
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Figure 2: Linear and cubic fitting to the data of raceway run 8, where the
mean stocking weight of the shrimp is 0.01 gm.
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Figure 3: Linear and cubic fitting to the data of raceway run 9, where the
mean stocking weight of the shrimp is 1 gm.
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Figure 4: (left) Linear fitting to the data of raceway run 10, where the mean
stocking weight of the shrimp is 4 gm. (right) Exponential fitting to the data
of raceway run 8, where the mean stocking weight of the shrimp is 0.01 gm.

3 Biomass Production Model

We present a classical size-structured population model with mass as the structure
variable. The factors considered here that affect the total biomass are the growth and
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mortality rates of normal shrimp. Since we have a controlled environment for growth,
we may assume that the growth and mortality rates of normal shrimp are not affected
by changes in environmental factors such as temperature, as well as other factors such
as population density.

Growth in shrimp consists of periods involving molting separated by intermolt peri-
ods where no external growth occurs (see [8] for more details). This makes the growth
in shrimp a discontinuous process. However, viewed over a long period of time we can
approximate the growth as a continuous process. Hence, we assume the individual
growth rate g(x, t) to be a continuous function of mass x and time t as depicted in
Section 2. The time interval for normal growth that we consider here is not sufficiently
long for the shrimp postlarve to grow to adult shrimp and thus we do not consider
reproduction in the biomass and vaccine production models.

Based on the above discussion our biomass production model is given by

ut + (g(x, t)u)x + m(x, t)u = 0, (x, t) ∈ (0, xmax]× (0, TB],

u(0, t) = 0, t ∈ (0, TB],

u(x, 0) = u0(x), x ∈ [0, xmax].

(3.1)

Here u(x, t) denotes density of individuals (number/unit mass) having mass x in
gms at time t. The growth rate is denoted by g(x, t) (mass/unit time), and the function
m(x, t) denotes the mortality rate (1/unit time). The initial population density is given
by u0(x) and xmax is the maximum mass of shrimp in the time interval from 0 to a
final time TB.

There are numerous papers that consider wellposedness of solutions to models simi-
lar to (3.1). For example, when the growth rate g and the mortality rate m are functions
of the size x only, wellposedness results are proved in [3] using weak formulations, and
in [4] semigroup theory is used to prove existence and uniqueness of solutions. For
systems with time dependent coefficients an analogous approach using the theory of
evolution operators [6, 19] offers a means for establishing the desired wellposedness
results.

3.1 Numerical Scheme

The following notation will be used throughout this section: 4x = xmax/nx and 4t =
TB/nt denote the spatial and time mesh size, respectively. The mesh points are given
by: xj = j4x, j = 0, 1, · · · , nx and tk = k4t, k = 0, 1, · · · , nt. We denote by uk

j ,
gk
j and mk

j the finite difference approximations of u(xj , tk), g(xj , tk) and m(xj , tk),
respectively. We adopt the following implicit difference scheme to solve the model
(3.1):

uk+1
j − uk

j

∆t
+

gk+1
j uk+1

j − gk+1
j−1 uk+1

j−1

∆x
+ mk+1

j uk+1
j = 0, 1 ≤ j ≤ nx; 0 ≤ k ≤ nt − 1,

uk+1
0 = 0.

(3.2)
From the above scheme we note that the solution remains positive for all time. This

is important from the biological point of view.
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3.2 Numerical Simulations

For numerical simulations with (3.2), we assume that xmax = 10 gms, TB = 21 days,
i.e., 3 weeks. The mesh size for ∆x and ∆t are taken to be 0.02 and 0.01, respectively.
The initial function u0(x) is defined as u0(x) = 167650δ1(x). This implies that the
initial population only contains shrimp that are 1 gm in mass, and the total number
of shrimp that are used to stock the raceway are

∫ 10

0
u0(x)dx = 167650 shrimp

which are 1 gm in mass. Hence, the total biomass is 167650 gm. Note that the stocking
weight of the shrimp is 1 gm. Thus, considering the data fits of Section 2, we can assume
that the growth rate is a constant function, and it is chosen as g(x, t) = 0.214. The
mortality rate function is chosen as m(x, t) = 0.0014. Graphs of typical solutions are
given in Figures 5 and 6. In Figure 5 we plot the population density u at time TB as a
function of the size x. From this figure we see that at time t = TB the weight of most
shrimp is around 5.5 gm. In Figure 6 we plot the population density u as a function
of time t and size x, where a cross section u(x, t) for a given time t has a similar shape
as u(x, TB) in Figure 5 centered at a different value of the size x.
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x 10

5
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u(x
,T B)

Figure 5: Plot of u(x, TB) as a function of the size x.
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Figure 6: Plot of u(x, t) as a function of size x and time t.

4 Vaccine Production Model

In the vaccine production stage the shrimp are infected by distributing chopped dead
shrimp infected with a recombinant virus evenly throughout the raceway. This trans-
fected biomass is sufficiently large so that most of the shrimp can be infected in a
short period of time, such as one day. There are other modes of transmission of virus
in shrimp, such as cohabitation with infected shrimp that may be shedding the virus
into the surrounding medium (waterborne infection). However, compared to the prob-
ability of shrimp becoming infected via ingestion, these modes of transmission can be
assumed (reasonably for this investigation) to be negligible. Hence we will only assume
infection via ingestion of dead transfected biomass. It is further assumed that all the
shrimp have an equal chance of becoming infected by eating the infected biomass. The
time interval considered here is 7 to 10 days. From [20] and [13] we know that during
this time interval almost no shrimp progress into the chronic state. Therefore we only
consider the following three compartment states: susceptible (S), latently infected (L)
and acutely infected (A) in our model.

In this model, we assume that shrimp will become instantly infected (i.e., progress
into latent state) as soon as they ingest some of the infected biomass. As we have
noted earlier, however, experimental observations suggest that there exists a temporal
delay between the initial latent infection and initial acute infection [14]. Moreover, it
is biologically unrealistic to expect all members of the shrimp population to progress
into the acute phase at a fixed number of days after initial latent infection. In addition
the shrimp in the acute phase have varying mortality rates because of the different
times that they progress into the acute phase and also due to the differences in genetic
make-up of the host. As we have already noted, we found that it is difficult to account
for the class age history (i.e., the length of time that shrimp spend in a state) of shrimp
in a particular (latent or acute) state using a system of delay PDE’s with only size as
the structure variable. This is because it is not obvious how to correctly represent the
integral involving the delay. As an alternative, in order to model variable residency
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times we keep track of the class age and the size of shrimp by incorporating both size
structure and class age structure into the latent and acute states.

We assume (based on experimental findings) that there is a possibility that shrimp
can stay in each the latent and acute state for more than 7 to 10 days. Thus we can
assume that the class age interval for both states is the same as the time interval TV

that we consider in our model. Note that all shrimp from the biomass production
raceway are healthy; there are no latently infected or acutely infected shrimp in the
raceway at time t = 0. We also know that shrimp in the acute state stop growing,
which means that the growth rate in this state is g = 0.

Based on the above discussions, our vaccine production model is given by

St(x, t) + (gS(x)S(x, t))x + mS(x)S(x, t) = −λS(x, t),

Lt(x, t, θ) + (gL(x)L(x, t, θ))x + Lθ(x, t, θ) + mL(x)L(x, t, θ) = −γL(θ)L(x, t, θ),

At(x, t, θ) + Aθ(x, t, θ) + mA(θ)A(x, t, θ) = 0,

L(x, t, 0) = λS(x, t),

A(x, t, 0) =
∫ t

0
γL(ξ)L(x, t, ξ)dξ,

S(0, t) = 0, L(0, t, θ) = 0, A(0, t, θ) = 0,

S(x, 0) = S0(x), L(x, 0, θ) = 0, A(x, 0, θ) = 0,
(4.1)

where (x, t, θ) ∈ [xmin, xmax]× [0, TV ]× [0, TV ]. In the above S(x, t) denotes the density
of individuals (number/unit mass) having mass x at time t . The function L(x, t, θ)
denotes the density of individuals (number/unit mass unit time) having mass x at time
t that have spent θ days in the latent state , whereas the function A(x, t, θ) denotes
the density of individuals (number/unit mass unit time) having mass x at time t that
have spent θ days in the acute state . The quantity gS(x) denotes the growth rate of
individuals (mass/unit time) in the susceptible state , gL(x) denotes the growth rate
of individuals (mass/unit time) in the latent state . The function mS(x) denotes the
mortality rate of individuals (1/unit time) in the susceptible state, and the function
mL(x) denotes the mortality rate ( 1/unit time) of individuals in the latent state, and
mA(θ) denotes the mortality rate (1/unit time) of the shrimp that spend θ days in the
acute state. The latent to acute rate function γL(θ) denotes the rate (1/unit time) at
which the shrimp in the latent state that have spent θ days in the latent state become
acutely infected, while the quantity λ denotes the infection rate (1/unit time) due
to ingestion of chopped infected shrimp. Finally S0(x) denotes the initial population
density of susceptible shrimp produced from the biomass production model.

4.1 Relation to a Size Structured Epidemic Model

In this section we show that the vaccine production model (4.1) can be reduced to a
size structured three compartment epidemic model.

Let L(x, t) denote the density of individuals in the latent state having mass x at
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time t. Noting that L(x, 0, θ) = 0, we have

L(x, t) =
∫ t

0
L(x, t, θ)dθ. (4.2)

Integrating the second equation of (4.1) from 0 to t with respect to θ, we have
∫ t

0
Lt(x, t, θ)dθ +

∫ t

0
(gL(x)L(x, t, θ))xdθ +

∫ t

0
Lθ(x, t, θ)dθ +

∫ t

0
mL(x)L(x, t, θ)dθ

= −
∫ t

0
γL(θ)L(x, t, θ)dθ.

Simplifying we find
∫ t

0
Lt(x, t, θ)dθ + (gL(x)L(x, t))x + L(x, t, t)− L(x, t, 0) + mL(x)L(x, t)

= −
∫ t

0
γL(θ)L(x, t, θ)dθ.

Since

Lt(x, t) =
d

∫ t
0 L(x, t, θ)dθ

dt
= L(x, t, t) +

∫ t

0
Lt(x, t, θ)dθ,

and L(x, t, 0) = λS(x, t), we obtain

Lt(x, t) + (gL(x)L(x, t))x + mL(x)L(x, t) = λS(x, t)−
∫ t

0
γL(θ)L(x, t, θ)dθ. (4.3)

If we define the average

ΓL(x, t) =

∫ t
0 γL(θ)L(x, t, θ)dθ∫ t

0 L(x, t, θ)dθ
, (4.4)

then on substituting (4.4) in (4.3) we obtain the equation

Lt(x, t) + (gL(x)L(x, t))x + mL(x)L(x, t) = λS(x, t)− ΓL(x, t)L(x, t). (4.5)

Next we let A(x, t) denote the density of individuals in the acute state having size
x at time t. Noting that A(x, 0, θ) = 0, we have

A(x, t) =
∫ t

0
A(x, t, θ)dθ (4.6)

Integrating the third equation of (4.1) from 0 to t with respect to θ, we have
∫ t

0
At(x, t, θ)dθ +

∫ t

0
Aθ(x, t, θ)dθ +

∫ t

0
mA(θ)A(x, t, θ)dθ = 0.

Simplifying we have
∫ t

0
At(x, t, θ)dθ + A(x, t, t)−A(x, t, 0) +

∫ t

0
mA(θ)A(x, t, θ)dθ = 0.
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Since

At(x, t) =
d

∫ t
0 A(x, t, θ)dθ

dt
= A(x, t, t) +

∫ t

0
At(x, t, θ)dθ,

and

A(x, t, 0) =
∫ t

0
γL(θ)L(x, t, θ)dθ,

we obtain

At(x, t) +
∫ t

0
mA(θ)A(x, t, θ)dθ =

∫ t

0
γL(θ)L(x, t, θ)dθ. (4.7)

As in the case for the latent state, we define the average

MA(x, t) =

∫ t
0 mA(θ)A(x, t, θ)dθ∫ t

0 A(x, t, θ)dθ
. (4.8)

Then on substituting (4.8) in (4.7) we obtain the equation

At(x, t) + MA(x, t)A(x, t) = ΓL(x, t)L(x, t), (4.9)

Thus, by summing over the class age the vaccine production model (4.1) reduces to

St(x, t) + (gS(x)S(x, t))x + mS(x)S(x, t) = −λS(x, t),

Lt(x, t) + (gL(x)L(x, t))x + mL(x)L(x, t) = λS(x, t)− ΓL(x, t)L(x, t),

At(x, t) + MA(x, t)A(x, t) = ΓL(x, t)L(x, t),

S(0, t) = 0, L(0, t) = 0, A(0, t) = 0,

S(x, 0) = S0(x), L(x, 0) = 0, A(x, 0) = 0,

(4.10)

with ΓL and MA as defined in (4.4) and (4.8) respectively. The model (4.10) is a
three compartment size structured model which involves only one structure variable,
namely the mass x.

4.2 Method of Characteristics for the Vaccine Production
Model

In this section we use the method of characteristics to obtain the solution of (4.1).
Consider the first equation of (4.1). The characteristic equations in this case are as
follows:

dt̃(s)
ds

= 1,

t̃(0) = t,

which implies t̃(s) = t + s, and

dx̃(s)
ds

= gS(x̃(s)),

x̃(0) = x,
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which implies that
∫ s

0

1
gS(x̃(τ))

dx̃(τ) = s. Let y = x̃(τ), so that we have

exp

(∫ x̃(s)

x

1
gS(y)

dy

)
= exp(s),

which implies that

exp

(∫ xmax

x̃(s)

1
gS(y)

dy −
∫ xmax

x

1
gS(y)

dy

)
= exp(−s). (4.11)

Let hS(r) = exp
(∫ xmax

r

1
gS(y)

dy

)
, then hS(r) is a decreasing function. Hence its

inverse function which we denote by (hS)−1 exists. By (4.11), we have that

hS(x̃(s)) = hS(x) exp(−s),

which implies that
x̃(s) = (hS)−1(hS(x) exp(−s)). (4.12)

We now consider the solution of S(x, t) along the characteristic curve. We then
have

dS(x̃(s), t̃(s))
ds

= − (
gS
x (x̃(s)) + mS(x̃(s)) + λ

)
S(x̃(s), t̃(s)),

S(x̃(0), t̃(0)) = S(x, t),

which implies that

S(x, t) = S(x̃(s), t̃(s)) exp
(∫ s

0
(gS

x (x̃(τ)) + mS(x̃(τ)) + λ)dτ

)
. (4.13)

Let y = x̃(τ) so that y = (hS)−1(hS(x) exp(−τ)). We then find that τ = ln
(

hS(x)
hS(y)

)
,

which implies that

dτ = −(hS)′(y)
hS(y)

dy. (4.14)

Noting that hS(y) = exp
(∫ xmax

y

1
gS(τ)

dτ

)
, we find that

(hS)′(y) = −hS(y)
gS(y)

. (4.15)

By (4.14) and (4.15), we have dτ =
1

gS(y)
dy. Thus simple calculations yield that

exp
(∫ s

0
(gS

x (x̃(τ)) + mS(x̃(τ))dτ

)
= exp

(∫ x̃(s)

x

gS
y (y) + mS(y)

gS(y)
dy

)

=
gS(x̃(s))
gS(x)

exp

(∫ x̃(s)

x

mS(y)
gS(y)

dy

)
.

12



Hence from (4.13), we obtain

S(x, t) =
gS(x̃(s))
gS(x)

S(x̃(s), t̃(s)) exp

(
−

∫ x

x̃(s)

mS(y)
gS(y)

dy

)
exp(λs).

Thus, if t ≤
∫ x

xmin

1
gS(y)

dy, we have

S(x, t) =
gS(x̃(−t))

gS(x)
S0(x̃(−t)) exp

(
−

∫ x

x̃(−t)

mS(y)
gS(y)

dy

)
exp(−λt), (4.16)

and if t >

∫ x

xmin

1
gS(y)

dy, we have

S(x, t) = 0. (4.17)

We then consider the second equation of (4.1). As above we consider the charac-
teristic equations

t̃(s) = t + s, θ̃(s) = θ + s

x̃(s) = (hL)−1(hL(x) exp(−s)), where hL(r) = exp
(∫ xmax

r

1
gL(y)

dy

)
.

(4.18)

We now consider the solution L(x, t, θ) along the characteristic curve,

dL(x̃(s), t̃(s), θ̃(s))
ds

= −{gL
x (x̃(s)) + mL(x̃(s)) + γL(θ̃(s))}L(x̃(s), t̃(s), θ̃(s))

L(x̃(s), t̃(s), θ̃(s)) = L(x, t, θ),

which implies that

L(x, t, θ) =
gL(x̃(s))
gL(x)

L(x̃(s), t̃(s), θ̃(s)) exp

(
−

∫ x

x̃(s)

mL(y)
gL(y)

dy

)
exp

(
−

∫ θ

θ̃(s)
γL(y)dy

)
.

Note that θ̃(s) ≤ t̃(s) for every s ∈ R, and we have that if θ ≤
∫ x

xmin

1
gL(y)

dy, then

L(x, t, θ) = λS(x̃(−θ), t−θ)
gL(x̃(−θ))

gL(x)
exp

(
−

∫ x

x̃(−θ)

mL(y)
gL(y)

dy

)
exp

(
−

∫ θ

0
γL(y)dy

)
,

(4.19)

and if θ >

∫ x

xmin

1
gL(y)

dy, then we have

L(x, t, θ) = 0. (4.20)

Finally, we consider the third equation of (4.1). The characteristic equations in this
case are

t̃(s) = t + s, θ̃(s) = θ + s, x̃(s) = x. (4.21)

13



We now consider the solution A(x, t, θ) along the characteristic curve and find

dA(x̃(s), t̃(s), θ̃(s))
ds

= −mA(θ̃(s))A(x̃(s), t̃(s), θ̃(s))

A(x̃(s), t̃(s), θ̃(s)) = A(x, t, θ),

which implies that

A(x, t, θ) = A(x̃(s), t̃(s), θ̃(s)) exp

(
−

∫ θ

θ̃(s)
mA(y)dy

)
.

Note that θ̃(s) ≤ t̃(s) for every s ∈ R, and we have that if x > xmin

A(x, t, θ) = exp
(
−

∫ θ

0
mA(y)dy

) ∫ t−θ

0
γL(y)L(x, t− θ, y)dy, (4.22)

and if x = xmin, we have
A(x, t, θ) = 0. (4.23)

4.3 Numerical Scheme for the Vaccine Production Model

We partition the x interval [xmin, xmax] with nx + 1 discrete points xj = j∆x with

∆x =
xmax − xmin

nx
and j = 0, 1, . . . , nx. We divide the t interval [0, TV ] into nt + 1

discrete points tk = k∆t with ∆t = TV /nt and k = 0, 1, . . . , nt. Finally we also
divide the θ interval [0, TV ] into nθ + 1 discrete points θl = l∆θ with ∆θ = TV /nθ and
l = 0, 1, . . . , nθ. We denote the finite difference approximations of S(xj , tk), L(xj , tk, θl)
and A(xj , tk, θl) by

Sk
j ≈ S(xj , tk),

Lk,l
j ≈ L(xj , tk, θl),

Ak,l
j ≈ A(xj , tk, θl),

and we let
gS
j = gS(xj), gL

j = gL(xj),

mS
j = mS(xj), mL

j = mL(xj)

γL,l = γL(θl), mA,l = mA(θl).

We discretize the vaccine production model (4.1) using an implicit scheme as follows.
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For j = 1, 2, . . . nx, k = 0, 1, . . . nt, and l = 0, 1, . . . , nθ we have

(i)
Sk+1

j − Sk
j

∆t
+

gS
j Sk+1

j − gS
j−1S

k+1
j−1

∆x
+ mS

j Sk+1
j = −λSk+1

j ,

(ii)
Lk+1,l+1

j − Lk,l+1
j

∆t
+

gL
j Lk+1,l+1

j − gL
j−1L

k+1,l+1
j−1

∆x
+

Lk+1,l+1
j − Lk+1,l

j

∆θ

+ mL
j Lk+1,l+1

j = −γL,l+1Lk+1,l+1
j ,

(iii)
Ak+1,l+1

j −Ak,l+1
j

∆t
+

Ak+1,l+1
j −Ak+1,l

j

∆θ
+ mA,l+1Ak+1,l+1

j = 0,

(iv) Sk+1
0 = 0,

(v) Lk+1,l+1
0 = 0, L0,l+1

j = 0, Lk+1,0
j = λSk+1

j ,

(vi) Ak+1,l+1
0 = 0, A0,l+1

j = 0, Ak+1,0
j =

ñθ,k+1∑

l=1

γL,lLk+1,l
j ∆θ, where ñθ,k = [tk/∆θ],

(4.24)

with [z] being the usual greatest integer part of z.
From the above scheme we note that the solution remains positive for all time. This

is important from the biological point of view.

Since L(x, t) =
∫ t

0
L(x, t, θ)dθ and A(x, t) =

∫ t

0
A(x, t, θ)dθ, from the solution of

(4.24) we have Lk
j =

ñθ,k∑

l=1

Lk,l
j ∆θ and Ak

j =
ñθ,k∑

l=1

Ak,l
j ∆θ.

Let BS , BL and BA denote the biomass of the susceptible, latent and acute popu-
lations, respectively. Then

BS(t) =
∫ xmax

xmin

xS(x, t)dx, BL(t) =
∫ xmax

xmin

xL(x, t)dx, and BA(t) =
∫ xmax

xmin

xA(x, t)dx.

The corresponding ratios of the biomass in each state to the total biomass are denoted
by

BRatioS(t) =
BS(t)

BS(t) + BL(t) + BA(t)
,

BRatioL(t) =
BL(t)

BS(t) + BL(t) + BA(t)
,

BRatioA(t) =
BA(t)

BS(t) + BL(t) + BA(t)
.

We also let NS , NL and NA denote the total number in the susceptible, latent and
acute populations. Then

NS(t) =
∫ xmax

xmin

S(x, t)dx, NL(t) =
∫ xmax

xmin

L(x, t)dx, and NA(t) =
∫ xmax

xmin

A(x, t)dx.
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The corresponding ratios of the total number in each state to the total population are
defined as

NRatioS(t) =
NS(t)

NS(t) + NL(t) + NA(t)
,

NRatioL(t) =
NL(t)

NS(t) + NL(t) + NA(t)
,

NRatioA(t) =
NA(t)

NS(t) + NL(t) + NA(t)
.

5 Numerical Simulations for the Coupled Bio-

mass and Vaccine Model

We simulate the biomass production model over 3 weeks. The results of this model are
used as initial conditions to the vaccine production model. In the following examples,
we assume that xmin = 0 gm, xmax = 10 gm, TV = 7 days. The mesh size for ∆x,
∆t and ∆θ are given by 0.02, 0.01 and 0.001, respectively. Some of the parameters in
(4.1) are defined by λ = 1.5, gS(x) = 0.214, gL(x) = 0.107,mS(x) = 0.0014, mL(x) =
0.0028,mA(θ) = 1.21/[1.21 + (θ − 3)2].

The mortality function mA(θ) is plotted along with the cumulative mortality in
Figure 7. The cumulative mortality captures the effect of progression of TSV infection
on the mortality rate for acutely infected shrimp. With this mortality function we
perform four different numerical simulations each with different choices of the latent to
acute rate function. We present the resulting plots of population ratios corresponding
to these choices of latent to acute rate functions to illustrate how this quantity affects
the population ratios and hence the dynamics of the epidemic.
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Figure 7: (left) The mortality function mA(θ). (right) Cumulative mortality

1− exp

(
−

∫ θ

0

mA(τ)dτ

)

16



5.1 Example 1

In this section the latent to acute rate function is taken as

γL(θ) = γL
1 (θ) =

1
1 + exp(−4(θ − 3))

.

In Figure 8 we plot γL
1 (θ) (left) and the cumulative latent to acute function (right)
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Figure 8: (left) γL(θ), (right) 1− exp

(
−

∫ θ

0

γL(τ)dτ

)
.

which is given to be 1 − exp
(
−

∫ θ

0
γL
1 (τ)dτ

)
. In this figure we observe that after 2

days a non-negligible portion of latently infected shrimp start becoming acute. About
2% shrimp stay latently infected for more than 7 days. In Figure 9 we plot the total
number, NS , NL and NA of the susceptible, latent, and acute populations, respectively
in the top left hand corner. We plot the total biomass, BS , BL and BA in the top
right hand corner. In the bottom left hand corner we plot the NRatios for all three
populations, and in the bottom right hand corner we plot the respective BRatios. All
of the quantities plotted are defined in Section 4.3. From this figure we see that almost
all susceptible shrimp become latently infected after 2 days. The maximum number of
latently infected shrimp is seen at about 2.5 days. We observe that the acute phase
starts after 2 days. At day 7, about 89% of shrimp in the raceway are acutely infected.
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Figure 9: Results for the susceptible, latent and acute populations, with
γL(θ) = γL

1 (θ).
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5.2 Example 2

In this section the latent to acute rate function is taken as

γL(θ) = γL
2 (θ) =

10
1 + exp(−4(θ − 3))

.

In Figure 10 we plot γL
2 (θ) (left) and the cumulative latent to acute function (right)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

θ

γL 2(θ
)

Latent to Acute Rate Function γL
2
(θ)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

C
um

ul
at

iv
e 

F
un

ct
io

n 
(L

→
 A

)

Cumulative Function (L→ A)

Figure 10: (left) γL(θ), (right) 1− exp

(
−

∫ θ

0

γL(τ)dτ

)
.

which in this case is given to be 1 − exp
(
−

∫ θ

0
γL
2 (τ)dτ

)
. In this figure we observe

that around 2 days some portion of latently infected shrimp start becoming acute.
A negligible number of shrimp stay latently infected for more than 4 days. As done
in example 1, in Figure 11 we plot the total number, total biomass, NRatios and
BRatios of the susceptible, latent and acute populations. We observe that almost
all susceptible shrimp become latently infected after 2 days. The maximum number of
latently infected shrimp occurs at about 2 days. We observe that the acute phase starts
around 2 days. At day 7, about 99% of shrimp in the raceway are acutely infected.
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Figure 11: Results for the susceptible, latent and acute populations, with
γL(θ) = γL

2 (θ).
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5.3 Example 3

In this section the latent to acute rate function is taken as

γL(θ) = γL
3 (θ) =

1
1 + exp(−5(θ − 4))

.

In Figure 12 we plot γL
3 (θ) (left) and the cumulative latent to acute rate function
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Figure 12: (left) γL(θ), (right) 1− exp

(
−

∫ θ

0

γL(τ)dτ

)
.

(right) given as 1−exp
(
−

∫ θ

0
γL

3 (τ)dτ

)
. We observe that after 3 days some portion of

latently infected shrimp start becoming acute. About 5% shrimp stay latently infected
for more than 7 days. In Figure 13 we plot the total number, total biomass, NRatios
and BRatios for the susceptible, latent and acute populations. We see that almost all
susceptible shrimp become latently infected after 2 days. The maximum number of
latently infected shrimp occurs at about 3.5 days. We observe that the acute phase
starts after 3 days. At day 7, about 82% of shrimp in the raceway are acutely infected.
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Figure 13: Results for the susceptible, latent, and acute populations with
γL(θ) = γL

3 (θ).
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5.4 Example 4

In this section the latent to acute rate function is taken as

γL(θ) = γL
4 (θ) =

10
1 + exp(−5(θ − 4))

.

In Figure 14 we plot γL
4 (θ) (left) and the cumulative latent to acute function (right)
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Figure 14: (left) γL(θ), (right) 1− exp

(
−

∫ θ

0

γL(τ)dτ

)
.

given to be 1−exp
(
−

∫ θ

0
γL
4 (τ)dτ

)
. In this figure we observe that around 3 days some

portion of latently infected shrimp start becoming acute. A negligible number of shrimp
stay latently infected for more than 5 days. In Figure 15 we plot the total number,
total biomass, NRatios and BRatios for the susceptible, latent and acute populations as
done in the previous examples. Here we see that almost all susceptible shrimp become
latently infected after 2 days. The maximum number of latently infected shrimp occurs
at about 3 days. We observe that the acute phase starts around 3 days. At day 7,
about 98% of shrimp in the raceway are acutely infected.
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Figure 15: Results for the susceptible, latent, and acute populations with
γL(θ) = γL

4 (θ).
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5.5 Example Summary

In this section we compare the results presented in examples 1, 2, 3 and 4, to determine
the effect that the latent to acute rate function, γL(θ), has on the dynamics of the
epidemic. In Figure 16, we plot the four different cumulative latent to acute functions
that were used in the different examples presented earlier. In Figures 17, and 18, we plot
the total number, total biomass, NRatios and BRatios for the simulations performed
with γL

1 , γL
2 , γL

3 , and γL
4 for the latent population, and acute population respectively.

In Figure 17 we note that the time of occurence of the peak of each curve corre-
sponding to total number or total biomass, as well as the maximum amplitude of each
curve are determined by the shape of the corresponding function γL. In particular,
the determining factors are the time when a non-negligible number of latently infected
shrimp start becoming acute, and the rate at which the latent population becomes
acute as seen in Figure 16.

In Figure 18 we note that the time of occurence of the peak of each curve correspond-
ing to total number or total biomass is determined by the time when a non-negligible
number of latently infected shrimp start becoming acute, and the rate at which the
latent population becomes acute (see Figure 16). The rate at which the population
becomes acute and the mortality rate (see Figure 7) also determine the maximum am-
plitude of each curve. For the acute population the mortality rate, mA, depends on
how long the shrimp stay in the acute phase and thus plays an important role in the
dynamics of this population.

In conclusion, the latent to acute rate function γL plays a very important role in
determining the particular shape of the curves corresponding to the total number, total
biomass, NRatio and BRatio, i.e., the progression of the viral epidemic.
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Figure 16: The cumulative latent to acute functions.
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Figure 17: Results for the latent population L.
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Figure 18: Results for the acute population A.
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6 Conclusions and Future Work

In this paper we have reported on our initial efforts to develop quantitative models
along with numerical techniques for simulation of a coupled biomass/vaccine production
system. While the overall approach is valid for general viruses in crustaceans, we focus
here on Taura Syndrome Virus in controlled shrimp populations. After developing the
models with detailed and explicitly stated assumptions, we demonstrate their utility
in understanding possible outcomes in terms of biomass ratios for several latent to
acute rate functions γL. Our numerical simulations in Section 5 indicate that the
distribution of the infected population in the latent and acute stages is very sensitive
to the shape and magnitude of the function γL. Hence γL plays an important role in
the construction and operation of a production system such as the raceways mentioned
in our introduction. One should also understand sensitivity of the model with respect
to other functions such as the mortality rate mA since understanding these will assist
in determining the optimal harvest time of infected shrimp in order to obtain maximal
production of vaccine/antibody. Once these parameters are known, one can use control
theoretic methods to design efficient production systems. We note that, in general,
parameters such as γL and mA will be species dependent as well as virus specific. A
more formal mathematical sensitivity analysis methodology for the models we have
investigated can be developed using ideas from [2, 5] in a Prohorov metric framework.

To estimate these critical parameters, we will need to develop an inverse problem
methodology which will also help in ascertaining feasibility and the practical implica-
tions of various operating conditions in the production system. We will also need data
obtained on a small scale from a population of shrimp infected with a specific virus so
that an inverse problem can be performed to estimate γL, mA, and other important
parameters of the production system. We can then use the estimated parameters to
carry out forward simulations using the coupled biomass and vaccine production model
developed in this paper to determine efficient ways to operate the raceway.

There are other parameters in our coupled biomass and vaccine production model
that also have a significant impact on the outcome of the production system. In
this paper we have fixed the growth rates and the mortality rates in the biomass
model as well as in all three compartments in our vaccine model. This was done on
the assumption that the shrimp populations grow and are infected in a controlled
environment. Indeed parameters such as nutrient levels, temperature and the density
of the population, which can significantly affect the growth and mortality rates, can
all be controlled to some degree. In order to ascertain how these quantities affect the
dynamics of the production system it will be necessary to obtain data for mortality
in shrimp affected by a particular virus as well as growth and mortality of normal
shrimp in controlled environments. The infection rate λ may also be controlled in the
production system since one can introduce chopped infected biomass into the raceway
to allow all the shrimp to become infected in a certain number of days. In this paper we
fixed the infection rate λ to be a constant and it thus is only determined by a factor of
ingestion. This was done on the assumption that all the shrimp have an equal chance to
become infected and all other modes of transmission of virus are negligible compared to
infection via ingestion. In order to determine the optimal amount of chopped infected
biomass required to infect the entire shrimp population in a certain period of time, we
can use inverse problem techniques along with data obtained from experiments.

In the section on data fitting we have shown that data for normal growth of shrimp
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obtained from the Waddell Mariculture center could be fairly approximated with linear
functions in the range 1-20 gm. As mentioned in Section 2, exponential growth of early
postlarvae has been observed by authors in [12]. Thus, it may be that production of
vaccine could be significantly higher from a given biomass of postlarvae vs. the same
biomass of juvenile or adult shrimp. Hence an important task involves developing a
second separate model for nursery phase of shrimp growth from zero to one gram to
explore use of very small animals as production system for vaccine or protein. This
could be compared to the existing model. We would have to know the differences in
dynamics of infection of small shrimp vs. juveniles and possible differences in viral
load per gram body mass as shrimp become larger. This would be an interesting
application of the models for comparison, assuming we can answer some of the basic
questions with a reporter gene or endogenous viral protein in bioassay studies. Clearly,
one would need additional data in order to investigate the importance of exponential
growth in our model.

Our model and associated computational methodology are sufficiently general to
permit future investigation of both underlying crustacean growth/death hypotheses
and marine raceway operating conditions as well as characteristics of viral progression
in specific species, all of which are important to the marine aquaculture industry. For
the study of viral epidemiology of marine species, the calculation of the basic repro-
duction ratio, usually denoted by R0 in the literature [20], is important to determine
whether the viral disease persists or dies out. Our interest in this paper is vaccine
production, and calculation of R0 is not important in this context. Computation of R0

could in principle, of course, be done for models such as ours (e.g., see [16]), but we do
not pursue that here.

Investigation of commercial aspects of the overall countermeasure production sys-
tem can also be pursued using this class of models with theoretic control methods.
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